Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Cities across the globe are driving systemic change in social and ecological systems by accelerating the rates of interactions and intensifying the links between human activities and Earth's ecosystems, thereby expanding the scale and influence of human activities on fundamental processes that sustain life. Increasing evidence shows that cities not only alter biodiversity, they change the genetic makeup of many populations, including animals, plants, fungi and microorganisms. Urban-driven rapid evolution in species traits might have significant effects on socially relevant ecosystem functions such as nutrient cycling, pollination, water and air purification and food production. Despite increasing evidence that cities are causing rapid evolutionary change, current urban sustainability strategies often overlook these dynamics. The dominant perspectives that guide these strategies are essentially static, focusing on preserving biodiversity in its present state or restoring it to pre-urban conditions. This paper provides a systemic overview of the socio-eco-evolutionary transition associated with global urbanization. Using examples of observed changes in species traits that play a significant role in maintaining ecosystem function and resilience, I propose that these evolutionary changes significantly impact urban sustainability. Incorporating an eco-evolutionary perspective into urban sustainability science and planning is crucial for effectively reimagining the cities of the Anthropocene. This article is part of the theme issue ‘Evolution and sustainability: gathering the strands for an Anthropocene synthesis’.more » « less
- 
            Abstract There is a growing recognition that responding to climate change necessitates urban adaptation. We sketch a transdisciplinary research effort, arguing that actionable research on urban adaptation needs to recognize the nature of cities as social networks embedded in physical space. Given the pace, scale and socioeconomic outcomes of urbanization in the Global South, the specificities and history of its cities must be central to the study of how well-known agglomeration effects can facilitate adaptation. The proposed effort calls for the co-creation of knowledge involving scientists and stakeholders, especially those historically excluded from the design and implementation of urban development policies.more » « less
- 
            null (Ed.)Many of the world’s major cities have implemented tree planting programs based on assumed environmental and social benefits of urban forests. Recent studies have increasingly tested these assumptions and provide empirical evidence for the contributions of tree planting programs, as well as their feasibility and limits, for solving or mitigating urban environmental and social issues. We propose that current evidence supports local cooling, stormwater absorption, and health benefits of urban trees for local residents. However, the potential for urban trees to appreciably mitigate greenhouse gas emissions and air pollution over a wide array of sites and environmental conditions is limited. Consequently, urban trees appear to be more promising for climate and pollution adaptation strategies than mitigation strategies. In large part, this is due to space constraints limiting the extent of urban tree canopies relative to the current magnitude of emissions. The most promising environmental and health impacts of urban trees are those that can be realized with well-stewarded tree planting and localized design interventions at site to municipal scales. Tree planting at these scales has documented benefits on local climate and health, which can be maximized through targeted site design followed by monitoring, adaptive management, and studies of long-term eco-evolutionary dynamics.more » « less
- 
            Abstract Sustainable urban systems (SUS) science is a new science integrating work across established and emerging disciplines, using diverse methods, and addressing issues at local, regional, national, and global scales. Advancing SUS requires the next generation of scholars and practitioners to excel at synthesis across disciplines and possess the skills to innovate in the realms of research, policy, and stakeholder engagement. We outline key tenets of graduate education in SUS, informed by historical and global perspectives. The sketch is an invitation to discuss how graduates in SUS should be trained to engage with the challenges and opportunities presented by continuing urbanization.more » « less
- 
            Abstract Explicit characterisation of the complexity of urban landscapes is critical for understanding patterns of biodiversity and for detecting the underlying social and ecological processes that shape them. Urban environments exhibit variable heterogeneity and connectivity, influenced by different historical contingencies, that affect community assembly across scales. The multidimensional nature of urban disturbance and co‐occurrence of multiple stressors can cause synergistic effects leading to nonlinear responses in populations and communities. Yet, current research design of urban ecology and evolutionary studies typically relies on simple representation of the parameter space that can be observed. Sampling approaches apply simple urban gradients such as linear transects in space or comparisons of urban sites across the urban mosaic accounting for a few variables. This rarely considers multiple dimensions and scales of biodiversity, and proves to be inadequate to explain observed patterns. We apply a multidimensional approach that integrates distinctive social, ecological and built characteristics of urban landscapes, representing variations along dimensions of heterogeneity, connectivity and historical contingency. Measuring species richness and beta diversity across 100 US metropolitan areas at the city and 1‐km scales, we show that distinctive signatures of urban biodiversity can result from interactions between socioecological heterogeneity and connectivity, mediated by historical contingency.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
